•    Freeware
  •    Shareware
  •    Research
  •    Localization Tools 20
  •    Publications 715
  •    Validators 2
  •    Mobile Apps 22
  •    Fonts 31
  •    Guidelines/ Draft Standards 3
  •    Documents 13
  •    General Tools 38
  •    NLP Tools 105
  •    Linguistic Resources 265

Search Results | Total Results found :   1214

You refine search by : All Results
  Catalogue
In this study, a multilingual phone recognition system for four Indian languages - Kannada, Telugu, Bengali, and Odia - is described. International phonetic alphabets are used to derive the transcription. Multilingual Phone Recognition System (MPRS) is developed using the state-of-the-art DNNs. The performance of MPRS is improved using the Articulatory Features (AFs). DNNs are used to predict the AFs for place, manner, roundness, frontness, and height AF groups. Further, the MPRS is also developed using oracle AFs and their performance is compared with that of predicted AFs. Oracle AFs are used to set the best performance realizable by AFs predicted from MFCC features by DNNs. In addition to the AFs, we have also explored the use of phone posteriors to further boost the performance of MPRS. We show that oracle AFs by feature fusion with MFCCs offer a remarkably low target of PER of 10.4%, which is 24.7% absolute reduction compared to baseline MPRS with MFCCs alone. The best performing system using predicted AFs has shown 2.8% reduction in absolute PER (8% reduction in relative PER) compared to baseline MPRS.

Added on December 17, 2019

26

  More Details
  • Contributed by : Consortium
  • Product Type : Research Paper
  • License Type : Freeware
  • System Requirement : Not Applicable
  • Author : Manjunath K E,K. Sreenivasa Rao,Dinesh Babu Jayagopi

Resyllabification is a phonological process in continuous speech in which the coda of a syllable is converted into the onset of the following syllable, either in the same word or in the subsequent word. This paper presents an analysis of resyllabification across words in different Indian languages and its implications in Indian language text-to-speech (TTS) synthesis systems. The evidence for resyllabification is evaluated based on the acoustic analysis of a read speech corpus of the corresponding language. This study shows that the resyllabification obeys the maximum onset principle and introduces the notion of prominence resyllabification in Indian languages. This paper finds acoustic evidence for total resyllabification. The resyllabification rules obtained are applied to TTS systems. The correctness of the rules is evaluated quantitatively by comparing the acoustic log-likelihood scores of the speech utterances with the original and resyllabified texts, and by performing a pair comparison (PC) listening test on the synthesized speech output. An improvement in the log-likelihood score with the resyllabified text is observed, and the synthesized speech with the resyllabified text is preferred 3 times over those without resyllabification.

Added on December 17, 2019

20

  More Details
  • Contributed by : Consortium
  • Product Type : Research Paper
  • License Type : Freeware
  • System Requirement : Not Applicable
  • Author : Mahesh M,Jeena J Prakash,Hema A Murthy

A method to detect spoken keywords in a given speech utterance is proposed, called as joint Dynamic Time Warping (DTW)-Convolution Neural Network (CNN). It is a combination of DTW approach with a strong classifier like CNN. Both these methods have independently shown significant results in solving problems related to optimal sequence alignment and object recognition, respectively. The proposed method modifies the original DTW formulation and converts the warping matrix into a gray scale image. A CNN is trained on these images to classify the presence or absence of keyword by identifying the texture of warping matrix. The TIMIT corpus has been used for conducting experiments and our method shows significant improvement over other existing techniques.

Added on December 13, 2019

14

  More Details
  • Contributed by : Consortium
  • Product Type : Research Paper
  • License Type : Freeware
  • System Requirement : Not Applicable
  • Author : Ravi Shankar,C.M. Vikram,S.R.M. Prasanna

We investigate a number of Deep Neural Network (DNN) architectures for emotion identification with the IEMOCAP database. First we compare different feature extraction frontends: we compare high-dimensional MFCC input (equivalent to filterbanks), versus frequency-domain and time-domain approaches to learning filters as part of the network. We obtain the best results with the time-domain filter-learning approach. Next we investigated different ways to aggregate information over the duration of an utterance. We tried approaches with a single label per utterance with time aggregation inside the network; and approaches where the label is repeated for each frame. Having a separate label per frame seemed to work best, and the best architecture that we tried interleaves TDNN-LSTM with
time-restricted self-attention, achieving a weighted accuracy of 70.6%, versus 61.8% for the best previously published system which used 257-dimensional Fourier log-energies as input.

Added on December 13, 2019

6

  More Details
  • Contributed by : Consortium
  • Product Type : Research Paper
  • License Type : Freeware
  • System Requirement : Not Applicable
  • Author : Mousmita Sarma, Pegah Ghahremani, Daniel Povey,Nagendra Kumar Goel,Kandarpa Kumar Sarma, Najim Dehak

In this work, we present a simple and elegant approach to language modeling for bilingual code-switched text. Since code switching is a blend of two or more different languages, a standard bilingual language model can be improved upon by using structures of the monolingual language models. We propose a novel technique called dual language models, which involves building two complementary monolingual language models and combining them using a probabilistic model for switching between the two. We evaluate the efficacy of our approach using a conversational Mandarin-English speech corpus. We prove the robustness of our model by showing significant improvements in perplexity measures over the standard bilingual language model without the use of any external information. Similar consistent improvements are also reflected in automatic speech recognition error rates.

Added on December 13, 2019

9

  More Details
  • Contributed by : Consortium
  • Product Type : Research Paper
  • License Type : Freeware
  • System Requirement : Not Applicable
  • Author : Saurabh Garg, Tanmay Parekh, Preethi Jyothi