•    Freeware
  •    Shareware
  •    Research
  •    Localization Tools 20
  •    Publications 738
  •    Validators 2
  •    Mobile Apps 22
  •    Fonts 31
  •    Guidelines/ Draft Standards 3
  •    Documents 13
  •    General Tools 38
  •    NLP Tools 105
  •    Linguistic Resources 265
Several speech synthesis and voice conversion techniques can easily generate or manipulate speech to deceive the speaker verification (SV) systems. Hence, there is a need to develop spoofing countermeasures to detect the human speech from spoofed speech. System-based features have been known to contribute significantly to this task. In this paper, we extend a recent study of Linear Prediction (LP) and Long-Term Prediction (LTP)-based features to LP and Nonlinear Prediction (NLP)-based features. To evaluate the effectiveness of the proposed countermeasure, we use the corpora provided at the ASVspoof 2015 challenge. A Gaussian Mixture Model (GMM)-based classifier is used and the % Equal Error Rate (EER) is used as a performance measure. On the development set, it is found that LP-LTP and LP-NLP features gave an average EER of 4.78% and 9.18%, respectively. Score-level fusion of LP-LTP (and LP-NLP) with Mel Frequency Cepstral Coefficients (MFCC) gave an EER of 0.8% (and 1.37%), respectively. After score-level fusion of LP-LTP, LP-NLP and MFCC features, the EER is significantly reduced to 0.57%. The LP-LTP and LP-NLP features have found to work well even for Blizzard Challenge 2012 speech database.

Added on April 28, 2020


  More Details
  • Contributed by : Consortium
  • Product Type : Research Paper
  • License Type : Freeware
  • System Requirement : Not Applicable
  • Author : Himanshu Bhavsar, Tanvina B. Patel and Hemant A. Patil
Similar / Suggested Resources